留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

载药金纳米粒的研究进展

张鑫 刘颖 冯年平

张鑫, 刘颖, 冯年平. 载药金纳米粒的研究进展[J]. 药学实践与服务, 2016, 34(3): 196-200,236. doi: 10.3969/j.issn.1006-0111.2016.03.002
引用本文: 张鑫, 刘颖, 冯年平. 载药金纳米粒的研究进展[J]. 药学实践与服务, 2016, 34(3): 196-200,236. doi: 10.3969/j.issn.1006-0111.2016.03.002
ZHANG Xin, LIU Ying, FENG Nianping. Research progress of drug-loading gold nanoparticles[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(3): 196-200,236. doi: 10.3969/j.issn.1006-0111.2016.03.002
Citation: ZHANG Xin, LIU Ying, FENG Nianping. Research progress of drug-loading gold nanoparticles[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(3): 196-200,236. doi: 10.3969/j.issn.1006-0111.2016.03.002

载药金纳米粒的研究进展

doi: 10.3969/j.issn.1006-0111.2016.03.002
基金项目: 国家自然科学基金项目(81202925)

Research progress of drug-loading gold nanoparticles

  • 摘要: 近年来,作为一种新型药物递送系统,金纳米粒已引起了广泛关注。由于其特殊的物理化学性质,能与多种类型药物发生相互作用,如蛋白质、核酸、小分子药物等,从而可应用于肿瘤治疗和检测。笔者对载药金纳米粒的制备方法、载药方式和安全性等问题进行综述。
  • [1] Luan QF, Zhou KB, Tan HN, et al. Au-NPs enhanced SPR biosensor based on hairpin DNA without the effect of nonspecific adsorption[J]. Biosens Bioelectron, 2011, 26(5):2473-2477.
    [2] Lee H, Lee K, Kim IK, et al. Fluorescent gold nanoprobe sensitive to intracellular reactive oxygen species[J].Adv Funct Mater, 2009, 19(12):1884-1890.
    [3] Rana S, Bajaj A, Mout R, et al. Monolayer coated gold nanoparticles for delivery applications[J]. Adv Drug Deliv Rev, 2012, 64(2):200-216.
    [4] Kumar A, Zhang X, Liang XJ. Gold nanoparticles:Emerging paradigm for targered drug delivery system[J]. Biotechnol Adv, 2013, 31(5):593-606.
    [5] Li L, Nurunnabi M, Nafiujjaman M, et al. GSH-mediated photoactivity of pheophorbide a-conjugated haparin/gold nanoparticle for photodynamic therapy[J]. J Control Release, 2013, 171:241-250.
    [6] Rahman WN, Corde S, Yaqi N, et al. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photo beams[J]. Int J Nanomedicine, 2014, 9:2459-2467.
    [7] Van de Broek B, Devoogdt N, D'Hollander A, et al. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy[J]. ACS Nano, 2011, 5(6):4319-4328.
    [8] Ganeshkumar M, Ponrasu T, Raja MT, et al. Green synthesis of pullulan stabilized gold nanoparticles for cancer targeted drug delivery[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2014, 130:64-71.
    [9] Southam G, Beveridge TJ. The occurence of sulfur and phosphorus within bacterially derived crystalline and pseudocrystalline octahedral gold formed in vitro[J]. Geochim Cosmochim Acta, 1996, 60(20):4369-4376.
    [10] Wen L, Lin ZH, Gu PY, et al. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route[J]. J Nanopart Res, 2009, 11(2):279-288.
    [11] Kumar KP, Paul W, Sharma CP. Green synthesis of gold nanoparticles with Zingiber officinale extract:Characterization and blood compatibility[J]. Process Biochem, 2011, 46(10):2007-2013.
    [12] Guo QQ, Guo QL, Yuan J, et al. Biosynthesis of gold nanoparticles using a kind of flavonol Dihydromyricetin[J]. Colloids Suraces A Physicochem Eng Asp, 2014, 441:127-132.
    [13] Woehrle GH, Brown LO, Hutchison JE. Thiol-functionalized,1.5-nm gold nanoparticles through ligand exchange reactions:scope and mechanism of ligand exchange[J]. J Am Chem Soc, 2005, 127(7):2172-2183.
    [14] Shem PM, Sardar R, Shumaker-parry JS. Soft ligand stabilized gold nanoparticles:Incorporation of bipyridyls and two-dimensional assembly[J]. J Colloid Interface Sci, 2014, 426:107-116.
    [15] Tatarchuk VV, Sergievskaya AP, Zaikovsky VI, et al. Hydrophilic gold nanoparticles stabilized with tris(2-aminoethyl)amine:Preparation and characterization[J]. Colloids Surf A Physicochem Eng Asp, 2014, 441:496-503.
    [16] Hamaguchi K, Kawasaki H, Arakawa R.Photochemical synthesis of glycine-stabilized gold nanoparticles and its heavy-metal-induced aggregation behavior[J]. Colloids Surf A Physicochem Eng Asp, 2010, 367(1-3):167-173.
    [17] Kim ST, Chompoosor A, Yeh YC, et al. Dendronized gold nanoparticles for siRNA delivery[J]. Small, 2012, 8(21):3253-3256.
    [18] Kim CK, Ghosh P, Pagliuca C, et al. Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells[J]. J Am Chem Soc, 2009, 131(4):1360-1361.
    [19] Ding Y, Zhou YY, Chen H,et al. The performance of thiol-terminated PEG paclitaxel-conjugated gold nanoparticles[J]. Biomaterials, 2013, 34(38):10217-10227.
    [20] Brown SD, Nativo P, Smith JA, et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin[J]. J Am Chem Soc, 2010, 132(13):4678-4684.
    [21] Sánchez-Paradinas S, Pérez-Andrés M, Almendral-Parra MJ, et al. Enhanced cytotoxic activity of bile acid cisplatin derivatives by conjugation with gold nanoparticles[J]. J Inorq Biochem, 2014, 131:8-11.
    [22] Kao HW,Lin YY,Chen CC, et al. Biological characterization of cetuximab-conjugated gold nanoparticles in a tumor animal model[J]. Nanotechnology, 2014, 25(29):295102.
    [23] Joshi P, Chakraborti S, Ramirez-Vick JE, et al. The anticancer activity of chloroquine gold nanoparticles against MCF-7 breast cancer cells[J]. Colloids Surf B Biointerfaces, 2012, 95(15):195-200.
    [24] Vigderman L, Zubarev ER. Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecles[J]. Adv Drug Deliv Rev, 2013, 65(5):663-676.
    [25] Choi CH, Alabi CA, Webster P, et al. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles[J]. Proc Nati Acad Sci U S A, 2010, 107(3):1235-1240.
    [26] Zhang ZW, Jia J, Lai YQ, et al. Conjugating folic acid to gold nanoparticles through glutathione for targeting and detecting cancer cells[J]. Bioorg Med Chem, 2010, 18(15):5528-5534.
    [27] Marangoni VS, Paino IM, Zucolotto V. Synthesis and characterization of jacalin-gold nanoparticles conjugates as specific markers for cancer cells[J]. Colloids Surf B Biointerfaces, 2013, 112:380-386.
    [28] Eshghi H, Sazgarnia A, Rahimizadeh M, et al. Protoporphyrin Ⅸ-gold nanoparticle conjugates as an efficient photosensitizer in cervical cancer therapy[J]. Photodiagnosis Photodyn Ther, 2013, 10(3):304-312.
    [29] Bao QY, Geng DD, Xue JW, et al. Glutathione-mediated drug release from Tiopronin-conjugated gold nanoparticles for acute liver injury therapy[J]. Int J Pharm, 2013, 446(1-2):112-118.
    [30] Shen GY,Zhang SB, Hu X. Signal enhancement in a lateral flow immunoassay based on dual gold nanoparticle conjugates[J]. Clin Biochem, 2013, 46(16-17):1734-1738.
    [31] Liu L, Du J, Li SJ, et al. Amplified voltammetric detection of dopamine using ferrocene-capped gold nanoparticle/streptavidin conjugates[J]. Biosens Bioelectron, 2013, 41:730-735.
    [32] Figueroa ER, Lin AY, Yan JX, et al. Optimization of PAMAM-gold nanoparticle conjugation for gene therapy[J]. Biomaterials, 2014, 35(5):1725-1734.
    [33] Haller E, Lindner W, Lämmerhofer M. Gold nanoparticle-antibody conjugates for specific extraction and subsequent analysis by liquid chromatography-tandem mass spectrometry of malondialdehyde-modified low density lipoprotein as biomarker for cardiovascular[J]. Anal Chim Acta, 2015, 857:53-63.
    [34] Ramezani F, Habibi M, Rafii-Tabar H, et al. Effect of peptide length on the conjugation to the gold nanoparticle surface:a molecular dynamic study[J]. Daru, 2015, 23(1):9-13.
    [35] Li N, Zhao PX, Astruc D. Anisotropic gold nanoparticles:synthesis, properties, applications, and toxicity[J]. Angew Chem Int Ed Engl, 2014,53(7):1756-1789.
    [36] Connor EE, Mwamuka J, Gole A, et al. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity[J]. Small, 2005, 1(3):325-327.
  • [1] 石晓萍, 吕迁洲, 李晓宇, 许青.  泊沙康唑对比伏立康唑经验治疗或诊断驱动治疗免疫功能低下患者侵袭性霉菌病的成本-效果分析 . 药学实践与服务, 2024, 42(): 1-8. doi: 10.12206/j.issn.2097-2024.202401050
    [2] 杨嘉宁, 赵一颖, 肖伟.  七味脂肝方对非酒精性脂肪性肝炎动物模型的药效学评价 . 药学实践与服务, 2024, 42(9): 389-398. doi: 10.12206/j.issn.2097-2024.202404096
    [3] 迟文雅, 袁艳, 李伟林, 吴茼妤, 俞媛.  负载骨髓间充质干细胞/白藜芦醇脂质体的水凝胶支架用于创伤性脑损伤治疗 . 药学实践与服务, 2024, 42(): 1-8. doi: 10.12206/j.issn.2097-2024.202406034
    [4] 戴菲菲, 傅翔, 陈琼年, 俞苏纯.  上海某二级医院革兰阴性菌流行特征的回顾性分析 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202305005
    [5] 唐淑慧, 凤美娟, 薛智霞, 鲁桂华.  帕博利珠单抗治疗所致免疫相关不良反应与中医体质的相关性研究 . 药学实践与服务, 2024, 42(5): 217-222. doi: 10.12206/j.issn.2097-2024.202311029
    [6] 桂明珠, 李静, 李志玲.  儿童伏立康唑的血药浓度与CYP2C19、CYP2C9和CYP3A5基因多态性的相关性研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202402020
    [7] 孙丹倪, 黄勇, 张嘉宝, 王培.  代谢相关脂肪性肝病的无创诊断与药物治疗 . 药学实践与服务, 2024, 42(10): 411-418. doi: 10.12206/j.issn.2097-2024.202403049
    [8] 王耀振, 徐灿, 吕顺莉, 田泾, 张东炜.  钾离子竞争性酸阻滞剂的药学特征研究进展 . 药学实践与服务, 2024, 42(7): 278-284. doi: 10.12206/j.issn.2097-2024.202306040
    [9] 张晶晶, 索丽娜, 郑兆红.  89例细菌性肝脓肿的临床特征及抗感染治疗分析 . 药学实践与服务, 2024, 42(6): 267-272. doi: 10.12206/j.issn.2097-2024.202302039
    [10] 徐璐璐, 刘爱军.  丹参白术方“异病同治”冠心病、血管性痴呆、特发性膜性肾病的网络药理学作用机制研究 . 药学实践与服务, 2024, 42(12): 1-8. doi: 10.12206/j.issn.2097-2024.202312027
    [11] 张艺昕, 关欣怡, 王博宁, 闻俊, 洪战英.  二氢吡啶类钙离子拮抗药物手性分析及其立体选择性药动学研究进展 . 药学实践与服务, 2024, 42(8): 319-324. doi: 10.12206/j.issn.2097-2024.202308062
    [12] 陈金涛, 乔子婴, 马明华, 张若曦, 王振伟, 年华.  基于网络药理学和分子对接技术研究金芪清疏颗粒治疗社区获得性肺炎的潜在机制 . 药学实践与服务, 2024, 42(11): 471-478. doi: 10.12206/j.issn.2097-2024.202312014
    [13] 冯志惠, 邓仪卿, 叶冰, 安培, 张宏, 张海军.  雀梅藤石油醚提取物诱导三阴性乳腺癌细胞凋亡的实验研究 . 药学实践与服务, 2024, 42(6): 253-259. doi: 10.12206/j.issn.2097-2024.202311055
    [14] 邹思, 吴岩斌, 吴锦忠, 吴建国, 黄家兴.  虎奶菇菌核多糖功能化纳米硒抗疲劳功效研究 . 药学实践与服务, 2024, 42(10): 426-432. doi: 10.12206/j.issn.2097-2024.202206072
    [15] 岳春华, 贲永光, 王海桥.  基于NLRP1炎症小体探讨百合知母汤抗抑郁的作用机制 . 药学实践与服务, 2024, 42(8): 325-333. doi: 10.12206/j.issn.2097-2024.202401033
    [16] 凯丽比努尔·奥布力艾散, 李倩, 谢志, 贾文彦, 尹东锋.  星点设计-效应面法优化仑伐替尼混合胶束的制备工艺 . 药学实践与服务, 2024, 42(11): 495-502. doi: 10.12206/j.issn.2097-2024.202403019
    [17] 陈炳辰, 王思真, 郭贝贝, 杨峰.  紫杉醇棕榈酸酯的合成及其脂质体的制备与处方研究 . 药学实践与服务, 2024, 42(9): 379-384, 410. doi: 10.12206/j.issn.2097-2024.202404062
    [18] 顾佳钰, 胡馨儿, 王晓飞, 张颖, 张海, 曹岩.  侧流免疫层析定量检测方法的研究进展 . 药学实践与服务, 2024, 42(7): 273-277, 284. doi: 10.12206/j.issn.2097-2024.202307037
    [19] 郭灵怡, 刘艳超, 高路, 刘瑞瑶, 吕权真, 俞媛.  醋酸卡泊芬净单硬脂酸甘油酯纳米粒抗白色念珠菌感染的增效作用研究 . 药学实践与服务, 2024, 42(): 1-8. doi: 10.12206/j.issn.2097-2024.202310043
    [20] 刘丽艳, 余小翠, 孙传铎.  纳武利尤单抗治疗非小细胞肺癌有效性及安全性的Meta分析 . 药学实践与服务, 2024, 42(10): 451-456. doi: 10.12206/j.issn.2097-2024.202310044
  • 加载中
计量
  • 文章访问数:  3480
  • HTML全文浏览量:  451
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-29
  • 修回日期:  2016-01-29

载药金纳米粒的研究进展

doi: 10.3969/j.issn.1006-0111.2016.03.002
    基金项目:  国家自然科学基金项目(81202925)

摘要: 近年来,作为一种新型药物递送系统,金纳米粒已引起了广泛关注。由于其特殊的物理化学性质,能与多种类型药物发生相互作用,如蛋白质、核酸、小分子药物等,从而可应用于肿瘤治疗和检测。笔者对载药金纳米粒的制备方法、载药方式和安全性等问题进行综述。

English Abstract

张鑫, 刘颖, 冯年平. 载药金纳米粒的研究进展[J]. 药学实践与服务, 2016, 34(3): 196-200,236. doi: 10.3969/j.issn.1006-0111.2016.03.002
引用本文: 张鑫, 刘颖, 冯年平. 载药金纳米粒的研究进展[J]. 药学实践与服务, 2016, 34(3): 196-200,236. doi: 10.3969/j.issn.1006-0111.2016.03.002
ZHANG Xin, LIU Ying, FENG Nianping. Research progress of drug-loading gold nanoparticles[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(3): 196-200,236. doi: 10.3969/j.issn.1006-0111.2016.03.002
Citation: ZHANG Xin, LIU Ying, FENG Nianping. Research progress of drug-loading gold nanoparticles[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(3): 196-200,236. doi: 10.3969/j.issn.1006-0111.2016.03.002
参考文献 (36)

目录

    /

    返回文章
    返回