留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

氮唑类抗真菌药物靶酶CYP51的研究进展

李冉 张大志

李冉, 张大志. 氮唑类抗真菌药物靶酶CYP51的研究进展[J]. 药学实践与服务, 2016, 34(2): 106-109. doi: 10.3969/j.issn.1006-0111.2016.02.003
引用本文: 李冉, 张大志. 氮唑类抗真菌药物靶酶CYP51的研究进展[J]. 药学实践与服务, 2016, 34(2): 106-109. doi: 10.3969/j.issn.1006-0111.2016.02.003
LI Ran, ZHANG Dazhi. Development in research of CYP51 as the target of triazoles[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(2): 106-109. doi: 10.3969/j.issn.1006-0111.2016.02.003
Citation: LI Ran, ZHANG Dazhi. Development in research of CYP51 as the target of triazoles[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(2): 106-109. doi: 10.3969/j.issn.1006-0111.2016.02.003

氮唑类抗真菌药物靶酶CYP51的研究进展

doi: 10.3969/j.issn.1006-0111.2016.02.003

Development in research of CYP51 as the target of triazoles

  • 摘要: 氮唑类药物是临床上应用最广、种类最多的广谱高效抗真菌药物,其作用靶点为真菌甾醇合成过程中的一个关键酶——羊毛甾醇14α-去甲基化酶(CYP51)。CYP51由CYP 51基因(同名ERG 11)表达。一方面,真菌CYP51是跨膜蛋白,难以纯化获得其准确的结构信息,成为药物研发的瓶颈之一;另一方面,CYP51变异是公认的真菌耐药的主要原因之一,研究其结构变化对于抗真菌耐药具有重要意义。因此,笔者对近年来CYP51的研究进展进行综述。
  • [1] Lepesheva GI, Waterman MR. Sterol 14alpha-demethylase(cyp51) as a therapeutic target for human trypanosomiasis and leishmaniasis[J]. Curr Top Med Chem, 2011, 11(16):2060-2071.
    [2] Yoshida Y. Cytochrome P450 of fungi:primary target for azole antifungal agents[J]. Curr Top Med Mycol, 1988, 2:388-418.
    [3] Warrilow AG, Melo N, Martel, CM, et al. Expression, purification, and characterization of Aspergillus fumigatus sterol 14α-demethylase(CYP51) isoenzymes A and B[J]. Antimicrob Agents Chemother, 2010, 54(10):4225-4234.
    [4] Lepesheva GI, Waterman MR. Structural basis for conservation in the CYP51 family[J]. Biochim Biophys Acta,2011, 1814(1):88-93.
    [5] Sheng CQ, Miao ZY, Ji HT, et al. Three-dimensional model of lanosterol 14α-demethylase from cryptococcus neoformans:active-site characterization and insights into azole binding[J]. Antimicrob Agents Chemother, 2009, 53(8):3487-3495.
    [6] Monk BC, Tomasiak TM, Keniya MV, et al. Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to a bilayer[J]. Proc Natl Acad Sci(USA), 2014, 111(10):3865-3870.
    [7] Ji, HT, Zhang WN, Zhou YJ, et al. A three-dimensional model of lanosterol 14α-demethylase of Candida albicans and its interaction with azole antifungal[J]. J Med Chem, 2000, 43(13):2493-2505.
    [8] Sheng CQ, Zhang WN, Zhang MY, et al. Homology modeling of lanosterol 14α-demethylase of Candida albicans and Aspergillus fumigatus and insights into the enzymesubstrate interactions[J]. J Biomol Struct Dyn, 2004, 22(1):91-99.
    [9] Li X, Vincent M, Andrew SC, et al. Three-dimensional models of wild-type and mutated forms of cytochrome P45014-sterol demethylases from aspergillus fumigatus and Candida albicans provide insights into Posaconazole binding[J]. Antimicrob Agents Chemother, 2004, 48(2):568-574.
    [10] Warrilow AG, Parker JE, Kelly DE, et al. Azole affinity of sterol 14-demethylase(CYP51) enzymes from Candida albicans and Homo sapiens[J]. Antimicrob Agents Chemother, 2013, 57(3):1352-1360.
    [11] Fan J, Urban M, Parker JE, et al. Characterization of the sterol 14α-demethylases of Fusarium graminearum identifies a novel genus-specific CYP51 function[J]. New Phytol, 2013, 198(3):821-835.
    [12] Hawkins NJ, Cools HJ, Sierotzki H, et al. Paralog re-emergence:a novel,historically contingent mechanism in the evolution of antimicrobial resistance[J]. Mol Biol Evol, 2014, 31(7):1793-1802.
    [13] Hargrove TY, Wawrzak Z, Lamb DC,et al.Structure-functional characterization of cytochrome P450 sterol 14α-demethylase(CYP51B) from Aspergillus fumigatus and molecular basis for the development of antifungal drugs[J].J Biol Chem, 2015, 290(39):23916-23934.
    [14] Cools HJ, Mullins JG, Fraaije BA, et al. Impact of recently emerged sterol 14 alpha-demethylase(CYP51) variants of Mycosphaerella graminicola on azole fungicide sensitivity[J]. Appl Environ Microbiol, 2011, 77(11):3830-3837.
    [15] Eddouzi J, Parker JE, Vale-Silva LA, et al. Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals[J].Antimicrob Agents Chemother, 2013, 57(7):3182-3193.
    [16] Morio F, Loge C, Besse B, et al. Screening for amino acid substitutions in the Candida albicans Erg11 protein of azole-susceptible and azole-resistant clinical isolates:new substitutions and a review of the literature[J]. Diagn Microbiol Infect Dis, 2010, 66(4):373-384.
    [17] Marichal P, Koymans L, Willemsens S, et al. Contribution of mutations in the cytochrome P45014alpha-demethylase(Erg11p, Cyp51p) to azole resistance in Candida albicans[J]. Microbiology, 1999, 145:2701-2713.
    [18] Kudo M, Ohi M, Aoyama Y, et al. Effects of Y132H and F145L substitutions on the activity, azole resistance and spectral properties of Candida albicans sterol 14-demethylase P450(CYP51):a live example showing the selection of altered P450 through interaction with environmental compounds[J]. J Biochem, 2005, 137(5):625-632.
    [19] Bellamine A, Lepesheva GI, Waterman MR. Fluconazole binding and sterol demethylation in three CYP51 isoforms indicate differences in active site topology[J]. J Lipid Res, 2004, 45(11):2000-2007.
    [20] Warrilow AG, Martel CM, Parker JE, et al. Azole binding properties of Candida albicans sterol 14-alpha demethylase(CaCYP51)[J]. Antimicrob Agents Chemother, 2010, 54(10):4235-4245.
    [21] Warrilow AG, Mullins JG, Hull CM, et al. S279 point mutations in Candida albicans sterol 14-alpha demethylase(CYP51) reduce in vitro inhibition by fluconazole[J]. Antimicrob Agents Chemother, 2012, 56(4):2099-2107.
    [22] Kelly SL, Lamb DC, Loeffler J, et al. The G464S amino acid substitution in Candida albicans sterol 14alpha-demethylase causes fluconazole resistance in the clinic through reduced affinity[J]. Biochem Biophys Res Commun, 1999, 262(1):174-179.
    [23] Lamb DC, Kelly DE, White TC, et al. The R467K amino acid substitution in Candida albicans sterol 14alpha-demethylase causes drug resistance through reduced affinity[J]. Antimicrob Agents Chemother, 2000, 44(1):63-67.
    [24] Lamb DC, Kelly DE, Schunck WH, et al. The mutation T315A in Candida albicans sterol 14alpha-demethylase causes reduced enzyme activity and fluconazole resistance through reduced affinity[J]. J Biol Chem, 1997, 272(9):5682-5688.
    [25] Mellado E, Alcazar FL, Garcia EG, et al. New resistance mechanisms to azole drugs in Aspergillus fumigatus and emergence of antifungal drugs-resistant A. fumigatus atypical strains[J]. Med Mycol, 2006, 44:367-371.
    [26] Garcia EG, Mellado E, Gomez-Lopez A, et al. Differences in interactions between azole drugs related to modifications in the 14-alpha sterol demethylase gene(Cyp51A) of Aspergillus fumigatus[J]. Antimicrob Agents Chemother, 2005, 49(5):2119-2121.
    [27] Rodriguez-Tudela JL, Alcazar-Fuoli L, Mellado E, et al. Epidemiological cutoffs and cross-resistance to azole drugs in Aspergillus fumigatus[J]. Antimicrob Agents Chemother, 2008, 52(7):2468-2472.
    [28] Alcazar-Fuoli L, Mellado E, Cuenca-Estrella M, et al. Probing the role of point mutations in the cyp51A gene from Aspergillus fumigatus in the model yeast Saccharomyces cerevisiae[J]. Med Mycol, 2011, 49(3):276-284.
    [29] Rodero L, Mellado E, Rodriguez AC, et al. G484S amino acid substitution in lanosterol 14-alpha demethylase(ERG11) is related to fluconazole resistance in a recurrent Cryptococcus neoformans clinical isolate[J]. Antimicrob Agents Chemother, 2003, 47(11):3653-3656.
    [30] Sionov E, Chang YC, Garraffo HM, et al. Identification of a Cryptococcus neoformans cytochrome P450 lanosterol 14alpha-demethylase(Erg11) residue critical for differential susceptibility between fluconazole/voriconazole and itraconazole/posaconazole[J]. Antimicrob Agents Chemother, 2012, 56(3):1162-1169.
  • [1] 冯志惠, 邓仪卿, 叶冰, 安培, 张宏, 张海军.  雀梅藤石油醚提取物诱导三阴性乳腺癌细胞凋亡的实验研究 . 药学实践与服务, 2024, 42(6): 253-259. doi: 10.12206/j.issn.2097-2024.202311055
    [2] 丁华敏, 郭羽晨, 秦春霞, 宋志兵, 孙莉莉.  消风止痒颗粒通过降低白三烯水平对小鼠特应性皮炎急性瘙痒的治疗作用研究 . 药学实践与服务, 2024, 42(5): 211-216. doi: 10.12206/j.issn.2097-2024.202306031
    [3] 练鲁英, 刘盈, 殷佳, 诸国樑, 徐飞.  上海某三级公立医院药品管理内部控制评价实践研究 . 药学实践与服务, 2024, 42(): 1-7. doi: 10.12206/j.issn.2097-2024.202402003
    [4] 桂明珠, 李静, 李志玲.  儿童伏立康唑的血药浓度与CYP2C19、CYP2C9和CYP3A5基因多态性的相关性研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202402020
    [5] 史生辉, 石飞, 雷琼, 王亚峰, 吴雪花.  青藏高原肺结核合并念珠菌感染患者的病原菌分布特点及耐药率分析 . 药学实践与服务, 2024, 42(6): 260-262, 272. doi: 10.12206/j.issn.2097-2024.202304014
    [6] 钱淑雨, 李铁军.  耐碳青霉烯类肠杆菌耐药机制的研究进展 . 药学实践与服务, 2024, 42(10): 419-425. doi: 10.12206/j.issn.2097-2024.202405005
    [7] 黄韵, 张正银, 金英, 郑怡菁, 李铁军, 孙莉莉.  耐碳青霉烯类肺炎克雷伯菌及大肠埃希菌临床分离株耐药性及耐药基因分析 . 药学实践与服务, 2024, 42(10): 439-444. doi: 10.12206/j.issn.2097-2024.202309059
    [8] 陈炳辰, 佟达丰, 万苗, 闫飞虎, 姚建忠.  UPLC-MS/MS法测定小鼠血浆中紫杉醇脂肪酸酯前药及其药代动力学研究 . 药学实践与服务, 2024, 42(8): 341-345. doi: 10.12206/j.issn.2097-2024.202404082
  • 加载中
计量
  • 文章访问数:  3507
  • HTML全文浏览量:  428
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-21
  • 修回日期:  2016-01-26

氮唑类抗真菌药物靶酶CYP51的研究进展

doi: 10.3969/j.issn.1006-0111.2016.02.003

摘要: 氮唑类药物是临床上应用最广、种类最多的广谱高效抗真菌药物,其作用靶点为真菌甾醇合成过程中的一个关键酶——羊毛甾醇14α-去甲基化酶(CYP51)。CYP51由CYP 51基因(同名ERG 11)表达。一方面,真菌CYP51是跨膜蛋白,难以纯化获得其准确的结构信息,成为药物研发的瓶颈之一;另一方面,CYP51变异是公认的真菌耐药的主要原因之一,研究其结构变化对于抗真菌耐药具有重要意义。因此,笔者对近年来CYP51的研究进展进行综述。

English Abstract

李冉, 张大志. 氮唑类抗真菌药物靶酶CYP51的研究进展[J]. 药学实践与服务, 2016, 34(2): 106-109. doi: 10.3969/j.issn.1006-0111.2016.02.003
引用本文: 李冉, 张大志. 氮唑类抗真菌药物靶酶CYP51的研究进展[J]. 药学实践与服务, 2016, 34(2): 106-109. doi: 10.3969/j.issn.1006-0111.2016.02.003
LI Ran, ZHANG Dazhi. Development in research of CYP51 as the target of triazoles[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(2): 106-109. doi: 10.3969/j.issn.1006-0111.2016.02.003
Citation: LI Ran, ZHANG Dazhi. Development in research of CYP51 as the target of triazoles[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(2): 106-109. doi: 10.3969/j.issn.1006-0111.2016.02.003
参考文献 (30)

目录

    /

    返回文章
    返回